
100% Job Assistance + Real-World Projects

Live DevOps training In HINDI
Job-Ready Skills to Launch Your Career in DevOps

Sh
ub
ha
m

Tra
in
Wi
th

HAPPY L
EARNIN

G

Shubham
TrainWith

HAPPY LEARNING

Shu
bha
m

Tra
inW
ith

“The best way to predict your future is to create it.”
– Abraham Lincoln.

Welcome to the DevOps Bootcamp by Train with Shubham (TWS). This program is designed
with a mission to not only teach you cutting-edge DevOps tools and practices but also to help
you land your dream job in the tech industry.
In today’s fast-paced tech world, companies are seeking professionals who can bridge the gap
between development and operations. At TWS, we believe that anyone with dedication and the
right guidance can master DevOps and build a promising career.

Our Motto: Happy Learning and Get Hired Easily!
This bootcamp is more than just a learning experience—it’s a career transformation journey.
You’ll gain hands-on experience, solve real-world problems, and master industry tools like
Docker, Kubernetes, Terraform, Jenkins, AWS, and much more.
By the end of this program, you will have not only technical knowledge but also a portfolio of
projects that demonstrates your expertise to potential employers.

Ready to Transform Your Career?
Join the 5,000+ students who have transformed
their careers with us!

You’ve taken the first step by exploring this
syllabus. Now it’s time to take the leap and
immerse yourself in a program that can truly
make a difference.

Let’s start the journey!
Let’s build the foundation of your DevOps
career together. Remember, your success is
our success.

Warm regards,
Shubham Londhe
Founder, Train with Shubham

Shu
bha
m

Tra
inW
ith

And many more ...

Shu
bha
m

Tra
inW
ith

Shubham
TrainWith

HAPPY LEARNING

Introduction to DevOps

“DevOps is the bridge between development and operations”
DevOps is more than just a methodology—it’s a cultural shift that emphasizes collaboration
between development and operations teams to deliver software faster, more reliably, and with
greater efficiency. By integrating automation, monitoring, and continuous feedback loops,
DevOps enables organizations to adapt to the rapidly changing tech landscape.
In simple terms, DevOps bridges the gap between developers (who write code) and operations
teams (who deploy and manage systems), ensuring a smooth pipeline from idea to production.

Infographic: The Power of DevOps

1. Market Demand
� “80% of Fortune 500 companies use DevOps practices.”
This statistic highlights how top organizations
rely on DevOps to stay competitive and agile. From
technology giants like Google, Amazon, and Netflix to
financial powerhouses like JPMorgan and Goldman Sachs,
DevOps is at the core of their operations.

2. Lucrative Career Opportunities
� “The average salary for a DevOps Engineer is ₹15–25 LPA
in India and $110,000–$150,000 in the Globally.”
With the DevOps skill set being in high demand,
professionals in this field are rewarded with competitive
salaries and ample growth opportunities.

3. Industries Hiring DevOps Professionals
DevOps professionals are not limited to one domain. Here’s a glimpse of where they are in
demand:

Technology & IT: Amazon, Google, Microsoft, IBM.
Finance: JPMorgan Chase, Goldman Sachs, ICICI Bank.
E-commerce: Flipkart, Walmart, Shopify.
Healthcare: Cerner, Practo, Medtronic.
Entertainment: Netflix, Disney+, Spotify.

From startups to multinational corporations, every
industry seeks skilled DevOps engineers to streamline
processes and enhance product delivery.

“DevOps professionals are among the
top 5 most in-demand roles globally.”

https://brandfetch.com/practo.com?view=library&library=default&collection=logos&asset=idqYHshjkq

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Lots of
Hands-On

Projects
Our program is all about you, lots of hands-on

learning with real-world demos to make
it real.

Exercises
for each
Module

Additional practice and self-check whether
you are able to do tasks independently

Illustrated
Handouts

Accompanying handout for each Module.
Overview with Key Takeaways

Active
Community

Be part of an exclusive community that
share the same journey as yours

DevOps
Certification

Earn a verifiable, recognized digital
credential to proof your knowledge

24/7
Support

Daily support from experienced
engineers, so you don't get stuck

3 Months
Duration

Accelerate your DevOps career in just 3
months with expert-led, hands-on training.

Weekend
Batches

Additional practice and self-check whether
you are able to do tasks independently

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Live Features:
Interactive Quizzes after each module with

 Leaderboard Tracking.
Weekly Hackathons to solve real-world problems.
Phase wise MCQ’s Exam

Internship Program:

Work on industry projects under TWS mentorship.

Job Opportunities:
Tie-ups with hiring partners.
Regular updates on openings in the DevOps

 domain.

Job Alerts:
Notifications for DevOps job openings.

Shu
bha
m

Tra
inW
ith

Welcome to Your DevOps Learning Journey
A total of 3 Months Live DevOps Bootcamp is carefully structured into four progressive learning
phases, ensuring a comprehensive grasp of the subject, starting from the basics and advancing to
job readiness. Each phase is tailored to help you build expertise, confidence, and a portfolio of
projects to showcase your skills.

The Four Phases of Learning

Phase 1: Foundation
Master the building blocks of DevOps with a strong foundation

HAPPY LEARNING

Git: Version control
for tracking and
managing code

changes.

Shell Scripting:
Automate routine

tasks with efficient
scripts.

Linux: Command-line
proficiency

for server management.

Jenkins: Automate CI/CD
pipelines.

Phase 2: DevOps Core Tools
Gain hands-on experience with essential tools for DevOps workflows

 Docker: Containerize
applications for seamless

deployment.

 Kubernetes: Orchestrate
containers at scale.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Terraform: Manage
infrastructure as

code.

Cloud Computing:
Explore AWS for

hosting.

Ansible: Ansible
automates IT tasks and

configurations.

Phase 3: Advanced Concepts.
Dive deeper into cutting-edge practices that enhance productivity

Monitoring Tools: Use
Prometheus and Grafana for

real-time insights.

Phase 4: Career Accelerator

This is where learning meets practical application, preparing you for
the job market:

Internships: Gain real-world experience by working on live projects.

Resume Preparation: Build an ATS-compliant resume highlighting
your DevOps skills.

Mock Interviews: Practice with industry professionals to ace interviews.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Briefing

Induction on overview of the 12-week
journey and what you aim to achieve.

1

2 Weeks 1-3

Linux, Git, and Shell Scripting.

3

5

4

Weeks 4-6:
Docker, Kubernetes, and Jenkins.

Weeks 7-9:
Cloud, Terraform, and Monitoring
Tools.

Weeks 10-12:
Real-Time Projects, Mock Interviews,
and Job Prep.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

By the end of the bootcamp, you can:

See the Bigger Picture by Connecting all the Dots.

Master CI/CD pipelines with Jenkins.

Have Holistic Understanding of DevOps

Deploy scalable apps with Kubernetes.

Automate infrastructure with Terraform. Monitor applications using

Prometheus and Grafana.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

1.What is an Operating System?

 OS as an abstraction layer between applications and hardware.

 Tasks of an OS

Linux Essentials

 Module 1: Foundations of Linux and Operating Systems

Resource Allocation and Management.

File Management.

Device Management.

Security.

Networking.

Multi-user and Multitasking in Linux.

 2. Components of an OS

Kernel: The core of Linux.

Application Layer: Interaction through GUIs or CLIs.

How to interact with the kernel: System calls and commands.

 3. Introduction to the Big 3 Operating Systems

Comparison of Windows, macOS, and Linux.

Client OS vs. Server OS.

Why Linux is preferred in DevOps.

 Module 2: Virtualization and Linux VMs

1.Understanding Virtualization and Virtual Machines

What is virtualization? (Example: Running multiple "computers" on one physical machine).

Architecture: Virtualization layers and hypervisors.

2.Hypervisors

Type 1: Bare-Metal Hypervisors (e.g., VMware ESXi, KVM).

Type 2: Hosted Hypervisors (e.g., VirtualBox, VMware Workstation).

Differences and use cases.

3.Setting up a Linux VM

Hands-on: Installing VirtualBox and creating an Ubuntu VM.

Exploring VM settings: Memory, CPUs, and storage.

Installing Linux using ISO files.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Linux Essentials
Module 3: Exploring the Linux File System

1.Linux File System Basics

Everything in Linux is a file: Explanation and examples.

File types: Regular files, directories, and binaries.

Hidden files: .filename convention.

2.Understanding the Linux Directory Structure

Important directories: /home, /etc, /var, /bin, /tmp, etc.

Navigating the file system: pwd, ls, cd.

File permissions and ownership: Basics and umask.

3.GUI vs. CLI in Linux

Advantages of using CLI in DevOps workflows.

Module 4: Managing Software on Linux

1.What is a Package Manager?

Purpose and tasks of a package manager.

Understanding software packages and repositories.

Pre-installed package managers (e.g., APT, YUM).

2.Hands-On with Package Managers

Basic commands for installing, removing, and updating software using apt and yum.

Adding repositories and using PPAs (Personal Package Archives).

3.Alternative Ways to Install Software

Binary downloads.

Source code compilation.

Module 5: Working with Text Editors

1.Introduction to Nano, Vi, and Vim

What is Vim?

Differences and use cases for CLI-based text editors in Linux.

2.Vim Basics

Modes: Insert and command mode.

Editing, saving, and exiting files.

3.Nano Basics

Basic commands and modes for Nano.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Linux Essentials
Module 6: Linux User and Permission Management

1.Understanding User Accounts

Types of accounts: User, superuser, service.

Differences and use cases.

/etc/passwd file overview.

UID: User Identifier.

2.Managing Users and Groups

Creating, modifying, and deleting users and groups:

High-level utilities: adduser, addgroup.

Low-level utilities: useradd, groupadd.

Differences and use cases.

Sudoers configuration: Managing privileged access.

3.Understanding Permissions

File ownership: User, group, others.

Permission types: Read, write, execute.

Changing permissions using symbolic (chmod) and numeric methods.

Module 7: Mastering the Command Line

1.Essential Commands for File and Directory Management

File operations: touch, rm, mv, cp.

Directory operations: mkdir, rmdir.

2.Pipes and Redirects

Using | for chaining commands.

Redirecting output with > and >>.

3.Practical Examples

Combining commands for log analysis with grep and less.

Using wildcards and subshells for advanced use cases.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Linux Advanced
Module 8: Introduction to Shell Scripting

1.Why Shell Scripting?

Automation use cases in DevOps.

Writing and executing shell scripts.

2.Key Shell Scripting Concepts

Variables and conditionals.

Built-ins, boolean operators, and loops (for, while).

File test operators and relational operators.

Passing arguments to a script using positional parameters.

3.Advanced Shell Scripting

Functions.

Debugging scripts: bash -x, set -x.

Scheduling scripts with cron.

Hands-on projects: Automated backups and log cleanup.

Module 9: Environment Variables

1.Understanding Environment Variables

What are they? (Analogy: Environment-specific configurations).

System-wide vs. user-specific variables.

2.Working with Environment Variables

Creating and persisting variables.

Real-world use cases in application deployment.

Module 10: Networking Essentials

1.Introduction to Networking

LAN, WAN, MAN, and PAN.

Key components: Switches, routers, gateways.

2.IP Addressing

IP, subnet masks, and gateways.

CIDR notation and subnets.

3.Essential Networking Commands for DevOps

ping, ifconfig, netstat, traceroute.

Basics of firewalls (iptables or ufw).

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Linux Advanced
Module 11: Secure Shell (SSH)

1.What is SSH?

Secure remote communication between computers.

Use cases in DevOps workflows.

2.How SSH Works

Authentication methods: Username/password vs. SSH key pairs.

Configuring SSH keys for secure access.

3.Practical Applications of SSH

Connecting to remote servers.

Using SSH in automation workflows.

Managing servers using ~/.ssh/config.

Git Fundamentals
Module 1: Introduction to Version Control

What is Version Control?

Version control tracks and manages changes to a project over time, allowing multiple people

to work on the same project without interfering with each other's work.

Git vs. GitHub:

Git: A tool that helps track and manage your code's history.

GitHub: A cloud service where you can store and share your Git repositories.

Module 2: Basic Concepts of Git

Repository: A place where all your project files and their history are stored.

Commit: A snapshot of changes made to files in the repository.

Branch: A separate line of development in the repository.

HEAD: A pointer to the current commit or branch you're working on.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Git Fundamentals
Module 3: Setup Git Repository

Installing Git: Get Git from git-scm.com.

Configure Git: Set user name and email globally:

 git config --global user.name "Name"

 git config --global user.email "abc@abc.com"

Module 4: Working with Git

Initialize Git Locally:

 git init # Initializes a new Git repository in the current directory

Clone a Repository (copy an existing repo to your local machine):

 git clone <repository-url>

Module 5: Git Branching and Workflow

Create a Branch:

 git branch <branch-name> # Creates a new branch but doesn’t switch to it

Switch to a Branch:

 git checkout <branch-name> # Switch to the specified branch

Create and Switch to a New Branch in One Command:

 git checkout -b <branch-name> # Create and immediately switch to the new branch

Delete a Branch:

 git branch -d <branch-name> # Delete a local branch

 git push origin --delete <branch-name> # Delete a branch from the remote repository

https://git-scm.com/

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Git Fundamentals
Module 6: Git Merge and Rebase

Merge and Rebase are both used to combine changes from different branches, but they handle the

history in different ways.

Git Merge: Combines changes from different branches and creates a new merge commit.

Merge Command:

 git checkout main # Switch to the main branch

 git merge feature-xyz # Merge feature-xyz branch into the main branch

Git Rebase: Rewrites the history by applying your commits on top of another branch, resulting in

a cleaner, linear history.

Rebase Command:

 git fetch origin # Fetch the latest changes from the remote

 git rebase origin/main # Rebase your branch on top of the latest 'main'

Module 7: Undoing Changes with Git

Git Restore: Allows you to undo changes to your working directory and staging area.

Restore Modified Files:

 git restore <file-name> # Discards changes in the working directory

Restore Staged Changes:

 git restore --staged <file-name> # Unstages a file without discarding changes

Git Reset: Moves the HEAD pointer to a previous commit. This is useful for undoing commits.

Reset to a Previous Commit (soft, mixed, hard):

 git reset --soft <commit-hash> # Keeps changes in the staging area

 git reset --mixed <commit-hash> # Keeps changes in the working directory

 git reset --hard <commit-hash> # Discards changes and resets to the commit

Git Revert: Creates a new commit that undoes the changes introduced by a previous commit.

Revert Command:

 git revert <commit-hash> # Creates a new commit to undo a previous commit

Git Commit Amend: Allows you to modify the last commit (e.g., fix a typo or add a forgotten file).

Amend Command:

 git commit --amend # Modify the last commit (e.g., change the commit message or add more

changes)

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Git Advanced
Module 8: Resolving Merge Conflicts

What is a Merge Conflict?

A merge conflict happens when Git can't automatically merge changes because both branches

modified the same part of a file.

How to Resolve Merge Conflicts:

Step 1: Identify the conflict in the file (Git marks it with conflict markers <<<<<<<, =======,

>>>>>>>).

Step 2: Manually edit the file to resolve the conflict.

Step 3: Stage the resolved file:

 git add <file-name>

Step 4: Complete the merge:

 git merge --continue # If you were in the middle of a merge

Avoiding Merge Conflicts:

Communicate with teammates about changes.

Frequently pull changes from the main branch to keep your branch up to date:

 git pull origin main # Pull latest changes from the main branch

Module 9: Working with SSH Keys for Authentication

What is SSH?

SSH keys provide a secure way of logging into your GitHub (or other Git hosts) without using your

username and password.

Generate SSH Key Pair:

Step 1: Generate an SSH key:

 ssh-keygen -t rsa -b 4096 -C "your.email@example.com" # Generate SSH key pair

 Follow the prompts to save the key.

Step 2: Add SSH key to your GitHub account:

Copy the public key:

 cat ~/.ssh/id_rsa.pub # Display the public key

Go to GitHub -> Settings -> SSH and GPG keys -> New SSH key, then paste the key.

Step 3: Test the connection:

 ssh -T git@github.com # Test the SSH connection with GitHub

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Git Advanced
Module 10: Git Client (GUI or Command Line Tool)

Git Command Line:

Git’s command line interface (CLI) is powerful and flexible, offering all the advanced features you

need.

Git GUI Tools:

GUI tools provide a more visual way to interact with Git, making it easier to manage branches,

commits, and merges. Popular Git clients include:

GitHub Desktop: A simple GUI for managing repositories and commits.

SourceTree: A powerful Git GUI with support for Git and Mercurial repositories.

GitKraken: A modern Git client with a beautiful interface and built-in support for Git flow.

Module 11: Additional Advanced Git Commands

Git Cherry-Pick: Apply a specific commit from one branch to another.

 git cherry-pick <commit-hash>

Git Diff: Show the differences between two commits or between a commit and the working directory.

 git diff <commit1> <commit2> # Show changes between two commits

Git Log: View the commit history of the repository.

 git log # View a simple log of commits

 git log --oneline # View logs in a compact format

Git Tag: Mark specific commits with labels (useful for releases).

 git tag <tag-name> # Create a tag at the current commit

Module 12: Git Stash and Git Pop

Git Stash: Temporarily save changes without committing.

 git stash # Save changes to stash

 git stash list # View stashed changes

Git Pop: Retrieve changes from the stash.

 git stash pop # Apply the last stashed changes

 git stash apply <stash-name> # Apply a specific stash

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Git Advanced

Module 13: Advanced Merging Strategies (Squash Merge)

Squash Merging: Combine multiple commits into a single commit to keep a clean history.

 git merge --squash <branch-name>

 git commit # Commit the squashed changes

Module 14: Git Hooks (Advanced)

Automating tasks with Git Hooks (e.g., pre-commit, pre-push).

Example: Pre-push hook to run tests before pushing:

 git commit --pre-commit-hook # Check code quality or run tests before commit

Module 15: Rebasing and Interactive Rebasing

Interactive Rebase: Clean up commit history by squashing or rewording commits.

 git rebase -i HEAD~3 # Interactively rebase the last 3 commits

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Docker Fundamentals

Module 1: Introduction to Build and Package Manager Tools

1.1 What are Build and Package Manager Tools?

Overview of build and package manager tools in DevOps

Importance of automating build processes

Examples: Maven, Gradle, npm, pip, etc.

1.2 What is an "Artifact"?

Definition and types of artifacts (JAR, WAR, Docker images, etc.)

Role of artifacts in deployment and distribution

1.3 What Does "Building the Code" Mean?

Definition of the build process (compiling, packaging, testing)

Continuous Integration (CI) and Continuous Deployment (CD) in DevOps

1.4 What is an "Artifact Repository"?

Introduction to artifact repositories (e.g., Nexus, Artifactory)

Managing and storing versioned artifacts

Benefits of centralized artifact storage

1.5 Different Build Tools for Different Programming Languages

Java: Maven, Gradle

JavaScript: npm, Yarn, Webpack

Python: pip, virtualenv

C/C++: Conan

C#: NuGet

Golang: dep

Ruby: RubyGems

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Docker Fundamentals

1.6 Building Artifacts for Specific Projects

Java (Gradle and Maven): Building artifacts using Gradle and Maven

JavaScript (npm/Yarn): Creating build scripts for front-end applications

Python: Building Python packages

C/C++: Using Conan for C/C++ builds

Golang: Building Go applications with dep

1.7 Build Tools for Software Development

Managing dependencies

Integrating build tools with version control systems (e.g., Git)

1.8 Build JavaScript Applications

Setting up build scripts for modern JavaScript apps

Integrating with bundlers (Webpack)

Managing front-end dependencies with npm/yarn

Module 2: Introduction to Docker and Containers

2.1 What is Docker?

Overview of Docker as a containerization platform

Docker's role in modern software development and DevOps

2.2 What is a Container?

Definition and key differences between containers and traditional virtual machines

Containerization and its benefits in scalability, portability, and efficiency

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Docker Fundamentals

2.3 Container vs Image

Difference between a container and a Docker image

Understanding the life cycle of a container and image

2.4 Docker vs Virtual Machines

Comparing Docker containers and Virtual Machines (VMs)

Advantages of Docker over VMs

2.5 Most Popular Container Technologies

Overview of popular container technologies: Docker, Containerd, and CRI-O

2.7 Docker Installation and Setup

Installing Docker on Linux, Windows, and macOS

Introduction to Docker Desktop for Windows and macOS

2.6 Docker Architecture & Components

Docker Daemon: Manages Docker containers and images

Docker Client: Interacts with Docker Daemon

Docker Registry: Stores Docker images (public and private repositories)

Docker Images: Immutable snapshots of a container

Docker Containers: Running instances of Docker images

Dockerfile: Defines the instructions to build Docker images

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Docker Fundamentals
Module 3: Docker Commands and Usage

3.1 Main Docker Commands

docker run: Create and start a container from an image

docker pull: Pull images from Docker registry

docker start/stop: Start or stop a container

docker ps: View running containers

docker ps -a: Show all containers (running and exited)

docker images: List available images

3.3 Docker Ports

Mapping container ports to host ports

Exposing ports for communication between containers and the outside world

3.2 Debug Commands

docker logs: Fetch logs of a container

docker exec -it: Start a bash session inside a container for debugging

docker inspect: View detailed information about containers and images

Module 4: Dockerfile and Docker Image Management

4.1 Dockerfile Basics

Writing a basic Dockerfile to define how a Docker image is built

FROM: Specify the base image

COPY: Copy files to the container

ENV: Set environment variables

ENTRYPOINT: Define the default executable for the container

RUN: Execute commands during image build

CMD: Default command executed when the container starts

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Docker Advanced

4.3 Distroless Images

What are distroless images and when to use them

Benefits of using distroless images for security and reduced attack surface

4.2 Multi-Stage Builds in Dockerfile

Benefits of multi-stage builds for reducing image size

Writing multi-stage Dockerfiles

Use cases for multi-stage builds

4.4 Real-World Dockerfile Examples

Example 1: Building a Java application with Gradle/Maven

Example 2: Building a Node.js application with npm

Example 3: Building a Python application with pip

Module 5: Docker Compose and Multi-Container Applications

5.1 What is Docker Compose?

Overview of Docker Compose for managing multi-container applications

Syntax and structure of a docker-compose.yml file

5.2 Docker Compose - Running Multiple Services

Defining services, networks, and volumes in a Compose file

Example project: A multi-container app with a web server and database

5.3 Managing Containers with Docker Compose

Starting, stopping, and scaling services with Docker Compose

View logs and inspect containers

4.5 Tagging and Pushing Docker Images

How to tag Docker images using docker tag

Pushing images to Docker Hub or private repositories

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Docker Advanced

Module 6: Docker Volumes and Data Persistence

6.1 Docker Volumes: Why Persistence is Important

What are Docker volumes and when to use them

Differences between host volumes, anonymous volumes, and named volumes

6.2 How Docker Volumes Work

Creating and mounting Docker volumes

Example use case: Persisting database data across container restarts

6.3 Configuring Volumes in Docker Compose

Defining volumes in docker-compose.yml

Managing shared volumes between containers

Module 7: Docker Networking Deep Dive

7.1 Bridge Network (Default)

Use Case: Connecting containers on the same host.

Working with Docker Compose: Using bridge networks for multi-container apps.

7.2 Host Network

Use Case: Removing isolation between Docker containers and the Docker host.

7.3 IPvlan and Macvlan Networks

IPvlan: Providing custom IP management for containers, with full control over IP address allocation.

Macvlan: Assigning MAC addresses to containers for direct network access on a physical network.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Docker Advanced

Module 8: Advanced Docker Concepts and Real-World Scenarios

8.1 Private Docker Registry

Setting up a private Docker registry using AWS or Nexus

Pushing and pulling images from private repositories

8.2 CI/CD Integration with Docker

Using Docker in continuous integration and deployment pipelines

Automating the build, test, and deployment of containerized applications

8.3 Docker with Nexus Repository

Pushing and pulling Docker images to/from Nexus repository

Running Nexus as a Docker container

8.4 Real-World Scenario: Deploying Containerized Applications

Deploying a full-stack application using Docker and Docker Compose

Example: A Node.js backend with a MongoDB database

Module 9: Final Project

9.1 Demo Project Overview

Setting up a complete DevOps pipeline using Docker

Building, testing, and deploying a multi-container application with Docker Compose

Pushing Docker images to a private Docker registry

9.2 Hands-On Project Development

Developing and deploying a containerized JavaScript or Java application

Using Docker volumes to manage data persistence

Automating the process with Docker Compose and CI/CD tools

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Docker Advanced

Module 8: Advanced Docker Concepts and Real-World Scenarios

8.1 Private Docker Registry

Setting up a private Docker registry using AWS or Nexus

Pushing and pulling images from private repositories

8.2 CI/CD Integration with Docker

Using Docker in continuous integration and deployment pipelines

Automating the build, test, and deployment of containerized applications

8.3 Docker with Nexus Repository

Pushing and pulling Docker images to/from Nexus repository

Running Nexus as a Docker container

8.4 Real-World Scenario: Deploying Containerized Applications

Deploying a full-stack application using Docker and Docker Compose

Example: A Node.js backend with a MongoDB database

Module 9: Final Project

9.1 Demo Project Overview

Setting up a complete DevOps pipeline using Docker

Building, testing, and deploying a multi-container application with Docker Compose

Pushing Docker images to a private Docker registry

9.2 Hands-On Project Development

Developing and deploying a containerized JavaScript or Java application

Using Docker volumes to manage data persistence

Automating the process with Docker Compose and CI/CD tools

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Jenkins Fundamenatals

Module 1: Introduction to Build Automation and CI/CD

What is Build Automation?

Automating source code retrieval.

Executing automated tests.

Compiling code/building Docker images.

Pushing artifacts to repositories.

Deploying artifacts to environments.

Role of Build Automation in CI/CD and DevOps.

What is CI/CD?

Continuous Integration: Merging, testing, and building code changes in real-time.

Continuous Deployment: Automatically deploying validated builds to various environments.

Benefits and importance of CI/CD pipelines in modern software delivery.

Comparing Build Automation Tools:

Overview of Jenkins, GitLab, Travis CI, Bamboo, and TeamCity.

Module 2: Getting Started with Jenkins

Introduction to Jenkins:

Overview of Jenkins.

Jenkins’ role in DevOps pipelines.

Key features and integrations.

Jenkins Architecture:

Master-agent model.

How Jenkins manages tasks and workloads.

Installing Jenkins:

Running Jenkins as a Docker container.

Installing Jenkins directly on Linux/Windows/MacOS.

Jenkins User Roles:

Administrator roles (plugin management, setup, etc.).

User roles (job creation, pipeline management, etc.).

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Jenkins Fundamenatals

Module 4: Advanced Pipeline Configurations

Pipeline as Code:

Storing Jenkinsfiles in version control.

Advantages of declarative pipelines over scripted pipelines.

Creating Robust Pipelines:

Parallel execution of stages.

Dynamically triggering stages and jobs.

Integrating external Groovy scripts.

Using Shared Libraries:

Creating and managing shared libraries.

Configuring shared libraries globally and per project.

Reusing code across pipelines.

Module 5: Integrating Jenkins with DevOps Tools

Source Code Management (SCM) Integration:

Configuring GitHub, GitLab, Bitbucket repositories in Jenkins.

Setting up Webhooks for automatic triggers.

Build Automation Tool Integration:

Configuring Maven, Gradle, npm, and Docker in Jenkins.

Deployment Automation:

Deploying artifacts to AWS, Azure, Kubernetes, and Docker Swarm.

Automating rollbacks and blue-green deployments.

Test Automation Integration:

Configuring Jenkins with Selenium, JUnit, and TestNG.

Managing test reports and logs.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Jenkins Advanced

Module 6: Credentials and Security Management

Managing Credentials in Jenkins:

Credential scopes (System vs. Global).

Credential types (Secret text, username/password, SSH keys, Docker host certificates, etc.).

Securing Jenkins:

Role-based access control.

Securing Jenkinsfile parameters.

Backup and restore strategies.

Module 7: Monitoring and Optimizing Jenkins

Monitoring Jenkins Performance:

Using plugins for performance monitoring.

Tracking build durations and resource usage.

Optimizing Jenkins Jobs:

Leveraging distributed builds.

Managing and cleaning up workspace and build history.

Module 8: Versioning and Best Practices

Software Versioning:

Understanding semantic versioning (major, minor, patch).

Automating dynamic versioning in builds.

Jenkins Best Practices:

Using pipeline as code.

Storing Jenkinsfiles in repositories.

Creating modular and reusable pipeline scripts.

Using shared libraries effectively.

Regularly updating Jenkins and plugins.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Jenkins Advanced

Module 9: Real-World Use Cases and Hands-On Labs

End-to-End CI/CD Pipeline:

Building a multi-stage pipeline for a Java application.

Containerizing with Docker and deploying to Kubernetes.

Complex Pipeline Scenarios:

Multibranch pipelines for microservices.

Automating workflows for large-scale deployments.

Troubleshooting Jenkins:

Common pipeline errors and their solutions.

Debugging failed builds and logs.

Module 10: Emerging Trends and Future of Jenkins

Scaling Jenkins:

Setting up Jenkins in a Kubernetes cluster.

Using Jenkins X for cloud-native CI/CD.

Jenkins Alternatives:

Exploring modern alternatives and integrations.

When to choose Jenkins over other tools.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Kubernetes Fundamentals
Module 1: Introduction to Containers and Kubernetes

1.Understanding Monoliths and Microservices

What are Monoliths?

Transition to Microservices architecture

Benefits and challenges of Microservices

2.The Evolution from VMs to Containers

Differences between VMs and Containers

Why containers became a game-changer

3.Container Fundamentals

Containers as Linux processes

Overview of Linux namespaces (demo: isolated processes)

Introduction to Linux cgroups

4.Introduction to Kubernetes

What is Kubernetes?

Why Kubernetes? The need for orchestration

Kubernetes vs traditional container management

Core features of Kubernetes

Module 2: Kubernetes Architecture and Components

1.Core Components

Control Plane (API Server, Scheduler, Controller Manager, etcd)

Node Components (kubelet, kube-proxy, container runtime)

Addons (DNS, CNI plugins, etc.)

2.Kubeconfig File

Purpose of the Kubeconfig file

Structure and usage

Creating a new user with a dedicated Kubeconfig file

3.Interacting with Kubernetes API

GVR (Group, Version, Resource) and GVK (Group, Version, Kind)

Using curl to query Kubernetes API

Using kubectl proxy to interact with the API

Difference between REST API and CLI usage

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Kubernetes Fundamentals
Module 3: Workloads and YAML Basics

1.Declarative vs Imperative

Pros and cons of both approaches

Hands-on examples of kubectl run (imperative) vs YAML files (declarative)

2.YAML Basics

Syntax and structure

Key-value pairs, lists, and anchors

Practice creating YAML manifests

3.Pods

What is a Pod?

Pod lifecycle and phases

Init containers (use cases and examples)

Sidecar containers (use cases like logging, proxy, etc.)

Module 4: Advanced Pod Concepts

1.Sidecar Container Example

Real-world example (logging, service mesh, or caching)

2.Pod Disruption Budgets

Purpose and configuration

Use cases in production environments

3.Resource Requests and Limits

Quality of Service (QoS) tiers

Understanding resource starvation and overcommitment

4.Pause Container

Purpose and role in Pod lifecycle

5.Downward API

Accessing Pod metadata from inside containers

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Kubernetes Fundamentals
Module 5: Kubernetes Scheduling

1.Namespaces

Isolation and resource organization

Resource quotas and limits in namespaces

2.Labels and Selectors

Organizing and selecting resources

3.Node Affinity

Scheduling Pods based on node attributes

4.Taints and Tolerations

Restricting Pod placement

5.Pod Priority and Preemption

Priority classes and use cases

6.Topology Spread Constraints

Ensuring Pod distribution

7.Scheduling Strategies

Manual binding

Pod readiness and its impact on scheduling

Module 6: ReplicaSets, Deployments, and Probes

1.ReplicaSet

Role and purpose

Deletion mechanisms and cascading deletion

2.Deployments

Rolling updates and rollback strategies

Deployment strategies: Recreate, Rolling, Canary

3.Kubernetes Probes

Liveness, Readiness, and Startup probes

Configuration and troubleshooting

Kubernetes Advanced

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Kubernetes Advanced
Module 7: ConfigMaps and Secrets

1.ConfigMaps

Using as environment variables

Using as volumes (demo)

Accessing programmatically from applications

2.Secrets

Types of secrets (Opaque, TLS, etc.)

ImagePullSecrets demo

Encrypting secrets

Module 8: StatefulSets, Services, and Ingress

1.StatefulSets

Stateful application management

Headless services with StatefulSets (demo)

2.Services

ClusterIP, NodePort, and ExternalName

Configuring DNS with external services

3.Ingress

Ingress controllers (NGINX demo)

Configuring routes with TLS (Cert-Manager integration)

Module 9: Kubernetes Authentication, Authorization, and Admission

1.Authentication, Authorization, and Admission (AAA)

Service accounts and default tokens

Role-Based Access Control (RBAC)

2.Admission Controllers

Validating and mutating admission webhooks

ImagePolicy webhook demo

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Kubernetes Advanced
Module 10: Kubernetes Volumes

1.Volume Concepts

Types of volumes: emptyDir, hostPath, local, etc.

2.Persistent Volumes (PV) and Persistent Volume Claims (PVC)

Dynamic provisioning with storage classes

NFS server-backed PV and PVC (demo)

Module 11: Project Deployment with Kubernetes

1.End-to-End Deployment

Python Cloud-Native App deployment

PostgreSQL via CloudNativePG

Ingress and Cert-Manager integration for HTTPS

Adding DNS records for production readiness

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Ansible
Module 1: Introduction to Ansible

Overview of Ansible:

Open-source origins: History, vision, and evolution of Ansible.

Why Ansible? Challenges it addresses in configuration management and orchestration.

Comparison with traditional tools (e.g., Puppet, Chef, SaltStack).

Core Features of Ansible:

Agentless architecture.

Declarative versus procedural approaches.

YAML-based configuration.

SSH as a transport mechanism.

Industry Use Cases:

Managing configurations across multiple servers.

Orchestrating application deployments.

Automating cloud provisioning.

Module 2: Getting Started with Ansible

Installing Ansible:

Installation on Linux, macOS, and Windows.

Setting up Ansible in a virtual environment.

Ansible Configuration Basics:

Understanding the ansible.cfg file.

Inventory files: Static and dynamic inventories.

Understanding SSH Keys:

Setting up password-less SSH access.

Troubleshooting SSH connection issues.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Ansible
Module 3: Ansible Architecture and Workflow

Core Components:

Control node.

Managed nodes.

Modules, plugins, and inventory.

Workflow:

Write -> Test -> Execute.

Idempotency in Ansible operations.

Execution Flow:

Task execution flow.

Parallelism and forks in Ansible.

4. Ansible Ad-Hoc Commands

Introduction to Ad-Hoc Commands:

Running quick tasks without playbooks.

Examples:

File management.

Service control.

User management.

5. Ansible Playbooks

Anatomy of a Playbook:

Structure and syntax.

Tasks, plays, and handlers.

Tags and conditionals.

Writing Effective Playbooks:

Reusing code with roles.

Using variables and templates.

Handling errors and retries.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Ansible
Module 6: Ansible Modules

Core Modules Overview:

File, user, service, and package modules.

Exploring Cloud Modules:

AWS, Azure, and GCP modules.

Writing Custom Modules:

Python basics for creating Ansible modules.

Best practices for module development.

Module 7: Variables in Ansible

Types of Variables:

Host and group variables.

Facts and registered variables.

Managing Variables:

Variable precedence and scope.

Encrypting variables using Ansible Vault.

Module 8: Advanced Templating with Jinja2

Introduction to Jinja2:

Syntax and filters.

Conditional statements and loops.

Dynamic Inventory and Configuration:

Using Jinja2 templates for dynamic file generation.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Ansible

Module 9: Roles in Ansible

Introduction to Roles:

Why roles? Modular and reusable configurations.

Structure of a role.

Creating and Using Roles:

Role dependencies and defaults.

Sharing roles via Ansible Galaxy.

Module 10: Ansible Galaxy and Collections

Introduction to Ansible Galaxy:

Discovering and downloading community roles.

Collections in Ansible:

Understanding and using collections.

Managing dependencies with collections.

Module 11: Ansible for Cloud Automation

Provisioning in AWS, Azure, and GCP:

Writing playbooks for cloud infrastructure automation.

Managing multi-cloud environments.

Integrating Ansible with Terraform for hybrid environments.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Ansible

Module 12: Ansible Tower / AWX

Overview:

What is Ansible Tower/AWX?

Differences between Ansible CLI and Tower.

Features:

Role-based access control (RBAC).

Job scheduling and workflows.

Visualizing playbook execution.

Installing and Configuring AWX:

Docker-based installation.

Managing projects and templates.

Module 13: Security and Compliance with Ansible

Securing Ansible Operations:

Using Ansible Vault to encrypt sensitive data.

Role-based access and SSH key management.

Compliance Automation:

Writing compliance playbooks.

Auditing and remediation with Ansible.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Terraform Fundamentals
Module 1: Introduction to Terraform

What is Terraform?

Definition, origin, and evolution of Terraform.

Key features: declarative vs imperative approach.

Comparison with other Infrastructure as Code (IaC) tools (e.g., CloudFormation, Ansible).

Why Terraform? (Problem-solving capabilities and unique features).

Open Source and Beyond

Terraform OSS vs Terraform Cloud vs Terraform Enterprise.

Community contributions and support.

Infrastructure as Code (IaC): A Paradigm Shift

Why IaC is essential in DevOps.

Declarative vs Imperative IaC (examples and use cases).

Module 2: Terraform Fundamentals

Core Concepts

Providers, Resources, and State Files.

The write-plan-apply workflow in Terraform.

Configuration language and its syntax (HCL).

Terraform Workflow

Writing basic configuration.

Planning infrastructure changes.

Applying and managing the state.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Terraform Fundamentals
Module 3: Terraform Architecture

Terraform Core

Role in interacting with providers and resources.

Execution plans and dependency graph.

Providers

What are providers?

Built-in vs community providers.

Writing custom providers.

State Management

Local vs remote state.

State locking and consistency.

Resolving state drift.

Comparison with Other Tools

Terraform vs Ansible: Declarative vs Procedural IaC.

Terraform vs CloudFormation: Portability and multi-cloud support.

Use case-based comparisons for managing large-scale infrastructure.

Module 4: Terraform CLI and Commands

Core Terraform Commands

init, plan, apply, destroy, refresh, validate, fmt.

Detailed walkthrough with use cases.

Advanced Commands

taint, import, graph, and state manipulation.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Terraform Fundamentals
Module 5: Terraform Variables and Expressions

Variables Overview

Input variables, output variables, and locals.

Defining and using variables in configurations.

Variable precedence and overrides.

Advanced Usage

Conditional expressions, dynamic blocks, and loops.

Variable validation and debugging.

Secrets management with environment variables.

Module 6: State Management and Backends

State File Overview

Role of state files in infrastructure management.

Secure state management practices.

Remote Backends

Configuring remote backends (e.g., S3, Azure Blob, GCS).

State locking with DynamoDB or Consul.

Real-world scenarios for multi-team collaboration.

Module 7: Terraform Provisioners

Understanding Provisioners

Use cases for provisioners (creation vs destruction).

Examples: file, local-exec, and remote-exec.

Advanced Provisioning

Using user_data with cloud instances.

Error handling and failure recovery.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Terraform Fundamentals
Module 8: Modularizing Terraform Configurations

Introduction to Modules

Importance of reusable code.

Using existing modules from Terraform Registry.

Creating and Managing Custom Modules

Module structure, best practices, and outputs.

Nested modules for complex infrastructures.

Module 9: Workspaces and Environment Management

Workspaces Overview

Creating and switching workspaces.

Using workspaces for managing multiple environments (dev, staging, production).

Module 10: Multi-Cloud Strategy with Terraform

Introduction to Multi-Cloud

Benefits and challenges of multi-cloud adoption.

Role of Terraform in multi-cloud infrastructure management.

Multi-Cloud Use Cases

Hybrid cloud deployments with AWS, Azure, and GCP.

High availability across clouds.

Hands-On Project

Provisioning and managing hybrid cloud infrastructure using Terraform.

Detailed diagram to demonstrate network interconnectivity, load balancing, and failover setups.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Terraform Fundamentals
Module 8: Modularizing Terraform Configurations

Introduction to Modules

Importance of reusable code.

Using existing modules from Terraform Registry.

Creating and Managing Custom Modules

Module structure, best practices, and outputs.

Nested modules for complex infrastructures.

Module 9: Workspaces and Environment Management

Workspaces Overview

Creating and switching workspaces.

Using workspaces for managing multiple environments (dev, staging, production).

Module 10: Multi-Cloud Strategy with Terraform

Introduction to Multi-Cloud

Benefits and challenges of multi-cloud adoption.

Role of Terraform in multi-cloud infrastructure management.

Multi-Cloud Use Cases

Hybrid cloud deployments with AWS, Azure, and GCP.

High availability across clouds.

Hands-On Project

Provisioning and managing hybrid cloud infrastructure using Terraform.

Detailed diagram to demonstrate network interconnectivity, load balancing, and failover setups.

Terraform Advanced

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Module 11: Automation with Terraform

Automating Cloud Infrastructure

Provisioning an EKS cluster with Terraform.

Real-world multi-cloud automation scenarios.

CI/CD Integration

Using Terraform with Jenkins, GitHub Actions, and GitLab CI.

Testing Terraform configurations with Terratest.

Module 12: Secrets Management and HashiCorp Vault

Securing Sensitive Data

Managing secrets in Terraform configurations.

Integrating with HashiCorp Vault for dynamic secrets.

Module 13: Advanced Topics

Custom Terraform Providers

Building and testing a provider from scratch.

Performance Optimization

Resource dependencies and parallel execution.

Tips for large-scale infrastructure management.

Cost Estimation and Tracking

Terraform Cloud Cost Estimation features.

Using third-party tools for cost tracking.

Terraform Advanced

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Module 14: Real-World Project-Based Modules

Project 1: Deploying a Scalable Web Application

Use Terraform to deploy a load-balanced, auto-scaled web app on AWS.

Project 2: Multi-Cloud Deployment

Provision infrastructure across AWS and GCP using Terraform.

For Mega Projects

Project 3: Kubernetes Cluster Management

Deploy and manage an EKS or AKS cluster with Terraform.

Project 4: Enterprise-Grade Monitoring and Logging

Integrate Terraform with Prometheus and Grafana for infrastructure monitoring.

Terraform Advanced

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Module 1: Introduction to Cloud Computing and AWS

1.Understanding Cloud Computing

What is Cloud Computing?

Advantages of Cloud Computing (cost, scalability, availability).

2.Types of Clouds

Public Cloud (e.g., AWS, Azure, Google Cloud).

Private Cloud (e.g., on-premise solutions).

Hybrid Cloud.

Comparison between Public, Private, and Hybrid Cloud.

3.Introduction to AWS

What is AWS?

AWS Global Infrastructure: Regions, Availability Zones, Edge Locations.

Core AWS Services Overview.

Module 2: Identity and Access Management (IAM)

1.IAM Basics

What is IAM and its purpose?

Users, Groups, Roles, and Policies.

2.Hands-On

Creating IAM Users, Groups, and Roles.

Attaching Policies to Control Access.

3.Best Practices

Principle of Least Privilege.

Enforcing MFA (Multi-Factor Authentication).

Auditing IAM Activity (CloudTrail).

AWS Cloud Computing

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Module 3: Compute with EC2

1.Introduction to EC2

What is EC2?

Types of EC2 Instances (General Purpose, Compute Optimized, etc.).

Choosing the Right Instance Type.

2.Launching EC2 Instances

Launch an Instance and Connect via SSH (Windows, Linux, macOS).

Configure Security Groups.

Managing EC2 Instances (Start, Stop, Reboot, Terminate).

3.Deploying Applications

Install and Configure Jenkins on EC2.

Deploy a Sample Application.

Module 4: Networking with AWS VPC

1.Virtual Private Cloud (VPC)

Understanding VPC: Isolation and Security.

Subnets: Public vs. Private Subnets.

IP Addressing and CIDR Blocks.

2.VPC Components

Route Tables, Internet Gateways, NAT Gateways.

Network ACLs (Access Control Lists).

Security Groups.

3.Advanced Networking

VPC Peering.

Traffic Mirroring.

VPC Flow Logs.

VPN Connections.

AWS Cloud Computing

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Module 5: AWS Storage (S3 and Beyond)

1.Introduction to S3

What is S3?

Key Features: Durability, Scalability, Object Storage.

Uploading and Downloading Objects.

2.Advanced S3 Features

Versioning and Lifecycle Policies.

Cross-Region Replication.

Event Notifications and Triggers.

S3 Encryption (At Rest and In-Transit).

S3 SDKs and APIs.

3.Other AWS Storage Services

EBS (Elastic Block Store).

EFS (Elastic File System).

Module 6: AWS Networking and Route 53

1.Introduction to Route 53

DNS Basics and Domain Registration.

Setting Up DNS Records (A, CNAME, MX).

2.Advanced DNS Features

Health Checks.

Routing Policies (Simple, Weighted, Latency-Based, Failover).

DNS-Based Load Balancing.

AWS Cloud Computing

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Module 7: Monitoring and Logging

1.AWS CloudWatch

Metrics, Logs, and Alarms.

Real-World Scenarios: Monitoring EC2 Instances and Applications.

2.AWS CloudTrail

Logging API Calls.

Security and Compliance Use Cases.

3.AWS Config

Resource Inventory and Configuration History.

Compliance Management.

Module 8: Serverless Computing with AWS Lambda

1.Introduction to Serverless

What is Serverless Computing?

Benefits of AWS Lambda (Auto-Scaling, Pay-as-You-Go).

2.Hands-On with Lambda

Writing and Deploying Lambda Functions.

Integrating Lambda with S3, DynamoDB, and API Gateway.

3.Real-World Use Cases

Automated File Processing.

Event-Driven Applications.

AWS Cloud Computing

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Module 10: AWS Developer Tools

1.CodeCommit

Setting Up Repositories.

Collaborating on Code with Teams.

2.CodePipeline

Configuring CI/CD Pipelines.

Automating Build, Test, and Deploy Workflows.

3.CodeBuild

Defining Build Specifications.

Integrating with Other AWS Services.

4.CodeDeploy

Automating Application Deployment.

Rolling Back Deployments.

AWS Cloud Computing

Module 9: Infrastructure as Code (IaC) with AWS CloudFormation

1.Introduction to CloudFormation

What is IaC?

Benefits of Using CloudFormation.

2.Hands-On

Writing CloudFormation Templates.

Managing Stacks.

Automating Infrastructure Provisioning.

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Module 11: Advanced Services and Topics

Containerization and Orchestration

AWS Elastic Container Registry (ECR): Managing Docker Images.

AWS Elastic Kubernetes Service (EKS): Deploying and Scaling Kubernetes Clusters.

AWS Elastic Load Balancer

Types of Load Balancers (Application, Network, Classic).

Configuring and Using Load Balancers.

CloudFront (CDN)

Content Delivery Networks and Use Cases.

Setting Up CloudFr/ont Distributions.

AWS Systems Manager

Centralized Management of Resources.

Automating Maintenance Tasks.

Module 12: AWS Migration and Databases

Migration Strategies and Tools

Lift-and-Shift vs. Re-Architecting.

AWS Migration Hub, Database Migration Service.

Working with Databases

RDS (Relational Database Service): Setting Up and Managing Databases.

DynamoDB: NoSQL Database Basics.

AWS Cloud Computing

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Module 1: Introduction to Monitoring and Observability

Why Monitoring is Crucial?

Importance of monitoring in DevOps.

Key differences: monitoring, logging, and observability.

Monitoring Tools Landscape

Overview of Prometheus and Grafana.

Alternatives: Nagios, Zabbix, and Datadog.

Module 2: Fundamentals of Prometheus

What is Prometheus?

Origin, evolution, and core features.

Role in infrastructure monitoring.

Prometheus Architecture

Components: Prometheus server, exporters, Alertmanager, Pushgateway.

Pull-based model and time-series database.

Module 3: Prometheus Setup and Configuration

Installing Prometheus

Installation on Docker and Kubernetes.

Configuring prometheus.yml for scraping metrics.

Data Collection

Scraping metrics from default targets.

Adding and managing scrape jobs.

Monitoring Tools

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Module 4: Prometheus Query Language (PromQL)

Introduction to PromQL

Querying and visualizing data.

Types of queries: instant, range, and aggregation.

Advanced PromQL Use Cases

Functions: rate(), irate(), histogram_quantile().

Writing queries for custom metrics.

Module 5: Exporters and Instrumentation

What are Exporters?

Default exporters: Node Exporter, Blackbox Exporter.

Configuring exporters for system metrics.

Application Instrumentation

Adding Prometheus client libraries to applications.

Exposing custom application metrics.

Module 6: Alerting and Notifications with Prometheus

Prometheus Alertmanager

Installing and configuring Alertmanager.

Writing alerting rules in Prometheus.

Notification Channels

Integrating email, Slack, and PagerDuty for alerts.

Monitoring Tools

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Module 7: Introduction to Grafana

What is Grafana?

Origin, key features, and use cases.

Grafana Architecture

Data sources, plugins, and dashboards.

Connecting Grafana to Prometheus

Adding Prometheus as a data source in Grafana.

Module 8: Grafana Setup and Visualization

Installing Grafana

Installation on Docker and Kubernetes.

Initial configuration and user management.

Creating Dashboards

Setting up panels and queries.

Using templates and variables for dynamic dashboards.

Module 9: Advanced Grafana Dashboards

Custom Visualization

Using plugins for advanced charts.

JSON model for importing/exporting dashboards.

Grafana Alerts

Creating and managing alerts on Grafana panels.

Configuring alert notification channels.

Monitoring Tools

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

Module 10: Scaling and High Availability

Scaling Prometheus

Federation and sharding techniques.

Best practices for high-availability setups.

Scaling Grafana

Configuring Grafana for multiple users and teams.

Best practices for enterprise-scale dashboards.

Module 11: Monitoring Kubernetes with Prometheus and Grafana

Key Kubernetes Metrics

Metrics to monitor: pod health, resource usage, cluster status.

Tools: kube-state-metrics and cAdvisor.

Deploying the Stack

Setting up Prometheus and Grafana in Kubernetes.

Visualizing Kubernetes metrics in Grafana.

Module 12: Securing Monitoring Systems

Authentication and Authorization

Setting up Grafana user roles and permissions.

Securing Prometheus endpoints.

Best Practices

Using TLS/SSL for secure communication.

Managing sensitive data and credentials.

Monitoring Tools

Shu
bha
m

Tra
inW
ith

HAPPY LEARNING

After completing the DevOps training, you can apply for our official

“Certified DevOps Practitioner” digital Certificate. To qualify, you’ll

need to complete the whole syllabus and submit the demo

projects you worked on during the bootcamp.

This certificate serves as proof that you have mastered the skills

taught in the DevOps Bootcamp and are capable of implementing

end-to-end DevOps processes in a professional environment.

It is fully verifiable, making it an excellent addition to your LinkedIn

profile and a valuable credential to share with future employers!

Complete with a certification

